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Abstract

This thesis explores how to represent image texture in order to obtain information about the
geometry and structure of surfaces, with particular emphasis on locating surface discontinuitics.
Theoretical and psychophysical results lead to the following conclusions for the representation of image

texture:

(1) A texture edge primitive is nceded to identify texture change contours, which are formed
by an abrupt change in the 2-D organization of similar items in an image. The texture edge
can be used for locating discontinuities in surface structure and surface geometry and for
establishing motion correspondence.

f
(2) Abrupt changes in attributes that vary with changing surface geometry -- oricntation, §
density, Iength, and width -- should be used to identify discontinutics in surface gecometry and N
surface structure.

(3) Texture tokens are nceded to separate the effects of different physical processes operating
on a surface. They represent the local structure of the image texture. Their spatial variation
can be used in the detection of texture discontinuities and texture gradients, and their
temporal variation may be used for establishing motion correspondence. What preciscly
constitutes the texture tokens is unknown; it appears, however, that the intensity changes
alone will not suffice, but local groupings of them may.

{4) The above primitives need to be assigned rapidly over a large range in an image.
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1. Introduction

This paper explores how to represent image texture in order to extract information about the
physical surfaces. Recent work by Marr [1977] suggests that the description of viewed surfaces plays a
fundamental role in carly visual processing and that determining the form of the descriptions given to the
image and to the viewed surfaces should be one of the first steps taken toward understanding early visual
processing. This paper analyzes texture in terms of these surface considerations and this representational
viewpoint, investigating what aspects of texture should be made explicit in an image to obtain
information of the geometry and structure of surfaces, with particular emphasis on locating surface
discontinuities. This sets apart this study of texture from many others, which emphasize texture
discrimination, a task that probably serves different goals.

In this introduction, we shall first cxpand on the aforementioned role of surfaces and
represeitations in early visual processing, and on the use of texture to obtain surface information. Some
mcthodological issues will then be discussed that reflect on the current level of understanding about the

representation of texture.

The role of surfaces in visual processing

The visual world is composed mostly of surfaces. An image can thus be attributed to four
physical factors: the surface geometry (how the surfaces lie in space), the surface reflectance, the
illumination, and the viewpoint [Horn 1977). For a sequence of images scparated in time an additional
attributing factor is needed: the surface correspondence between successive images (which will be
non-trivial if the surfaces are in motion relative to the viewer). 1t would be of great value if these factors
could be determined from an image or sequence of images since this would provide information directly

of the physical world that is present only indirectly in their combination in an image. "The himan visual
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processor’s facility at finding the shape and arrangement of visual <-rfaces, their lightness and color, the
location of discontinuitics in surface orientation, depth, and reflectance indicates that this information can

indeed be determined to a considerable degree. But how is it done?

Using image texture to infer surface information

The major sources of information about visual surfaces in an image include shading, stereo,
motion, texture gradients and edges. The first several make direct use of the intensity changes present in
an image. Shading obviously does so. Marr & Poggiv [1978) have shown that the intensity changes
present at several scales (the zero-crossings) are cffective corrcspor‘ldcncc tokens for sterco matching.
These intensity changes can also be used to obtain dircctionally sensitive motion information [Marr &
Ullman 1981]. The intensity changes in an image thus scem to provide sufficient constraint to exploit
these sources, and an understanding of the intensity change description was cvidently crucial to the
success so far [Marr & Poggio 1978, Marr & Hildreth 1980].

A precise understanding of how to distinguish among discontinuities in surface orientation,
depth, reflectance, and illumination, of how to find motion correspondence over a large range in an
image, and of how to obtain surface orientation and depth from texture gradients has proved more
elusive. In part, this may be because the intensity changes in an image alone do not provide sufficient
constraint to solve these problems casily, but that other aspects of the 2-1) information in an image such
as texture must also be madce explicit and used. Let us bricfly examine, in turn, cach of these latter
sources of surface information.

The location of a discontinuity in surface orientation, depth, reflectance, or illumination in an
image often coincides with an intensity cdge. But can the physical type of discontinuity (c.g. depth

chunge, orientation change, Mumination change) be determined from the intensitics directly? By looking

at the ity gradient atan edge, Ulhman’s Bight source detecton operator can, in prinaple. distinguish

s
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a pure reflectance change from other discontinuity types (c.g. illumination change) [Ullman 1976). By
cxamining the edge profiles, other edge parsings may be possible [Horn 1977]. 1t is not presently known
how well edges can be parsed into their physical correlates directly from intensity information in real
images. A discontinuily in image lexture originates at a discontinuity in surface structure or in surface
geometry, and can therefore be used 1o locate these two kinds of physical discontinuity.  The location of
surface discontinuities provides information that is useful, for instance, to processes that must decide .

where smooth surface assumptions are no longer valid. as in the interpolation of a surface across points

i

derived from stereo matching. Considerable emphasis will be given to locating surface discontinuitics in
this paper. , b

Motion correspondence across several degrees of visual angle in successive images (at which
human'’s arc quite adept -- the well-known apparent motion effect) is considerably more difficult problem
than stereo correspondence since it involves increased range, unknown direction of motion, and the
possibility of surface transformation over time. Given the profusion of intensity changes present in a real
image, motion correspondence driven solely on the intensity changes results in many candidate matches
for cach motion token (e.g. edge fragment). Ullman [1979] approached this problem by assigning a
likelihood to cach possible match between images assuming ncarby matches were more likely, and
computing the maximum fikclihood solution for that pair of images. An alternate approach would be to
use larger scale tokens such as texture discontinuitics and collinear groupings. which should have fewer
candidate matches over a given range than the raw intensity changes, to bring the longer range motions
into correspondence. Ullman noted that tokens that were more abstract than the raw intensity changes {

could be used to establish motion correspondence in humans, and called them group tokens. :

Determining surface depth from texture gradients requires extracting a measure that shows no

foreshortening in an image: this is necessary 1o tactor out the etfects of changing surface vnentation from
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those due to perspective [Stevens 1981a). In Figure 1.1, surface depth cannot be obtained from the height
of the ellipses since this measure is parallel to the texwure gradient and will vany both with surface surface
and depth. Thus, this distribution of heights could be duc w cither a ¢vlinder (changing height due
mostly to changing surface orientation) or a receding plane (changing height due entirely to changing
depth). However, if the width of the ellipses is used and provided that the cllipses are congrucent across
the surface. then surface depth can be obtained, since this measure is perpendicular to the texture
gradient and will not show foreshortening. Thus, the variation in eflipse widths will be duc entirely to
changing depth. Steven’s method for finding this measure with no (or least) foreshortening essentially
assumes that a description of image texture is available. In particular, such information as the position
and dimensions of small blobs in an image would be useful, while the location of the intensity changes
alone is probably too primitive a description of an image from which to extrict an unforeshortened
mecasure directly.

In su;nmary, distinguishing among discontinuitics in surface orientation, depth, reflectance, and
illumination, finding long-range motion correspondence, and obtaining surface orientation and depth
from texture gradients may prove difficult if only the intensity changes are examined directly, while if the
information in image texture is used, these problems may prove tractable. This makes it imperative to
understand what aspects of image texture should be identified in an image.  Without knowing what
relevant data will be available, it is impossibic to precisely define, say. a motion correspondence process
or a depth from texture process, with the best that can be determined are these processes’ abstract
computational needs. Thus, we could say that a motion correspondence process requires image tokens
that remain in correspandence with the same physical feature in successive views and for which there are
typically a small number of possible matches over the desired range. For depth from exture gradients, an

unforeshortened mecasure in the image s needed. But to be muach more specific requires knowing the
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Figure 1.1 Surface depth cannot be obtained from the height of the ellipses. since this measure is parallel
to the texture gradient and will vary both with surface orientation and depth. Surface depth can be
obtained from the width of the cllipses. however., since this measure 15 perpendicular o the texture
gradient and will not show foreshortening. Provided the ellipses are congruent across the surface, their
width will be inversely proportional to their distance from the viewer, [Figure courtesy of K. Stevens)
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form of the input data, in particular, knowing what aspects of image texture to detect in an image and

how they should be represented in the visual system.

Representational Emphasis

We seek to determine the early visual representation of image texture, since the form of the
description of image texture must be specified before its computation can be specified. If the broad goals
of the computation are not well understood, but instcad somc image computation is defined prematurely,
the results are likely to be of little value in the long term to the theory of vision. This representation’s
primitives -- the basic assertions that can be made about image texture -- need to be specified, in
particular. Other important representational issucs to be determined include the range and resolution
over which these primitives can be assigned in an image, and the referencing system for retrieving these
primitives (scc Marr and Nishihara [1978] for a discussion of visual representations). Marr [1976] has
called the early representation of the intensity changes and 2-1D geometric structure in an image the (fill)
primal sketch (the raw primal sketch represents just the intensity changes).

The primal sketch is the first of several representations that Marr [1977] sees as having a central
role in the computational theory of vision. The primal sketch is used to construct the 2%2-D skeich, a
viewer-centered rcprcs'emation of the visible surfaces in a scene. Itis in the 2%-D sketch that the various
factors that produce an image are scparated -- the surface geometry, surface reflectance, the illuminalibn,
and the viewpoint. Many processes that provide surface information from images. such as depth from
texture, can be viewed as rcading from the primal sketch and writing to the 2%-1) sketch.

The term early texture representation is used to indicate that we are interested here in the
description of texture that is produced carly in the visual processing, and is used for extracting global

surface information (the creation of the 2%-D sketch), and not a much richer description produced by

focal scruting that we might expect exists for the purposes of recogninon, and is much more hnnted in
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specd and image range than the early texture representation.

Informal definition of image texture must precede its precise computational definition

It is inevitable that the definition of image texture will be imprecise initially; we have to rely
upon an intuitive definition. This has been the case with other aspects of visual processing. An intensity
edge. for instance, is informally defined as a place in an image where the intensity changes abruptly, with
a surface correlate of a discontinuity in surface orientation, depth, reflectance, or illumination. Recently,
Marr & Hildreth [1980] have formally defined an cdge in tenns of the spatial coincidence of iplcnsily
changes at two nearby scales found by a convolution operation that will be described later. Their method
defines a precise computation on an image for detecting edges. The informal definition, however, existed
first, specifying roughly what is to be represented, and what significance it has with respect to physical
surfaces. ‘The formal definition then specifies how it is to be detected from an image. The idea of
detecting abrupt intensity changes is very intuitive and was an important precursor to determining their
precise computation. The aspects of image texture that should be detected is not as intuitively obvious,
Thus, we must begin by understanding roughly what aspects of image texture should be represented in an
image and what arc their physical correlates. Once we have approximate definitions of what we want, we
can then examine exactly how to compute them from an image. Such informal definitions can also be

used to test for their psychophysical existence,

This paper is d‘ividcd into two parts. Part I develops the theory of the representation of texture,
and compriscs Scclioné 2 through 5. In Scction 2, physical constraints on surface structure are
formulated. In Section 3 and 4, two kinds of image texture primitives, the rexture edse and the texiure
tokens respectively, are introduced along with the rationale for their utility to the visual system, Section S

sunimarizes Part 1
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Part 11 of this paper is devoted to demonstrations of the human visual system’s carly
representation of texture, serving as a check on the utility of these primitives to a successful visual
processor. Section 6 describes demonstrations supporting the existence of a texture edge primitive in this
representation, and Scction 7 describes demonstrations that restrict the range of what constitutes the

texture tokens in this representation. Section 8 summarizes Part 1.
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2. Physical Constraints on Surface Structure

An image is a two-dimensional projection of the three-dimensional wor'd, An important goal of
carly visual processing is, in a sensc, to invert this mapping. If the point in space corresponding to cach
image point could have arbitrary position and brightness, this task would be impossible. Qur abilities to
perceive the 3-D world visually indicate, of course, that this is not the case. The visual world must be
otherwise constrained. These physical constraints on the visible world and on the projected image must
be identified in order to understand how to infer backward from an image. Three physical constraints
will be identified that are relevant to surface structure. These constraints in their original form are due to

Marr [1981].

The predominance of surfaces

In the introduction, the visible world was considered composed mostly of surfaces that are
smooth enough that their local surface orientation could be discussed. F-or instance, a leaf defines such a
smooth surface. A hedge containing this leaf will itself define a smooth surface when viewed from
sufficiently far away. Even at distances where its leaves can be resolved but the variation in the distance
to them is small relative to their absolute distance from the viewer, the hedge can be considered an
approximately smooth surface. Thus, only in a physical situation such as a snowstorm would suitable
surfaces be hard to define.

A leafs reflectance function would be fairly constant over its surface if it were uniformly
pigmented. For a hedge, however, its composilc structure and the cffects of mutual illumination and
occlusion would make the spatial variation of its reflectance function very complex. 'This illustrates our

first constraint: the visible world can be regarded as being composed of smooth surfaces having reflectance

Sfunctions whose spatial variation ntay be complex.
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There are two consequences of this constraint in an image. First. image points typically
originate from surface points. Second, it may be very difficult 1o determine analytically the geometry of a
surface such as a hedge from the intensity values directly (i.e. by treating it as a shading problem) even if
the location of the light sources is known, because of the complex nature of its reflectance function.

While an analytic statement of the spatial variation of the hedge's reflectance function may be
complex, defining its spatial structure with respect to items that constitute it could be less so. ‘The leaves
that form the hedge’s surface may be of uniform size and density. ‘The leaves themselves may have
markings with their own characteristic attributes. Explicit descriptions of cach of these kinds of surface
item present in the hedge will capture information that is otherwise buried in its analytic reflectance

function. T'wo additional constraints formalize this notion.

Different processes form different kinds of surface items

A leaf and a lcaf marking are different not only to our senses, but they arc intrinsically different
in terms of their physical nature and origin. In order to formalize this intuitively simple idea, we can
think of lcaves as being gencrated by some physical process operating on a surface at a given scale, while
leaf markings arc generated by some different processes operating at a smaller scale. This provides the
sccond constraint; physically different processes operate on a surface to Jorm different kinds of items there.
One sct of processes operating at a given scale, thus, determines the size and shape of the leaves in a
hedge. Another forms the markings on those leaves. One sct of processes determines the spatial
arrangement of the hairs on an animal’s coat. Others form the spots and markings on that coat. This
constraint is important because it permits a physical distinction to be made between those aspects of
surface structure that are essentially the same kinds of items (such as two leaves in a hedge), being due to

the same physical processes. from those that are different kinds of items (such as a leaf and a lcaf

marking, or a leaf and a hrick), heing due to very different processes.

e
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Items generated by the same processes are similar
The third constraint is: surface items generated by the same physical processes tend 1o be more
similar to one another in their size, shape, lightness, color, and spatial arrangement than tv surface items
generated by other processes. This states that with respect to these attributes, a leaf is more likely similar to
another leaf than, say, to a brick.
In an image, the projection of the surface items gencrated by the same processes will ten i to be
more similar to one another in size, shape, contrast, color, oricntation, and spacing, than to the projection
of other surface items that are generated by different processes. Note, howcever, that the similarity may be

preserved only locally in an image, Changing surface gcometry and perspective projection can destroy

global similarity since size, contrast, orientation, and spacing can all vary with changing surfacc gcometry.

~—-————-—————______~1
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3. The Texture Edge

As stated in the introduction, an important goal of carly visual processing is determining the
different physical factors that produce an image. In particular, this involves decoupling surface
oricntation, depth, aﬁd the location of discontinuities in these frum surface reflectance and illumination.
In this section, we shall focus on surface discontinuitics. We shall sce that one consequence of the
previous scction’s constraints is that abrupt changes in texture in an image can be used to identify

discontinuitics in surface gcometry and surface structure.

The location of surface discontinuities is not explicit in the intensity changes

The location of discontinuities in surface structure or surface geometry are not yet explicit in the
intensity changes. There may be a myriad of contours present in the intensity changes, only a few of
which coincide with a discontinuity in surface geometry or surface structure. Others will be due to the
internal structure of a surface or to shadows and highlights. For example, in Figure 3.1 the bottom-most
herizontal line, which coincides with the texture boundary, may indeed be present in the intensity
changes but nothing there distinguishes it from the other horizontal lines, also present in the intensity
changes, as the location of a texture change in the image, and thus the likely location of changing surface
structure or surface gecometry (c.g. a brick wall abuiting a grass lawn). There may cven be no significant
intensity change coinciding with the image of a surface discontinuity, while contours defined by the
image structure may still be present there. It is the image structure contours that hold the key to

identifying discontinuitics in surface gcometry and surface structure.

Two types of image structure contours

'

Not every contour in an image is defined solely by intensity changes coincident with the

contour. A contour can afso be defined by imuage structure and it Jeast two diflerent wonvs, One hind

e —
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\

{
‘ Figure 3.1 There are many contours in this figure that are explicit in the intensity changes; for instance, i
the bottom-most horizontal line at the texture boundary is present there. Nevertheless, this line has not (
yet been distinguished from the other horizontal lines, which are also presentin the intensity changes, as
the location of a texture discontinuity in the image. Locating such abrupt texture changes in an inage is
important, since they ideniify the likely location of discontinuitics in surfuce structure or surface
geometry,
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can be created by an abfupl change in some 2-D organization in an image. In Figure 3.2, for cxample, the
45° change in the orientation of the line segments defines a contour that corresponds to the boundary
between the two oriented regions. A sudden change in local density of the line segments in this figure
also defines such a contour, which corresponds to the external boundary of the two regions, with the line
segment density vanishing outside these regions. We shall refer to such contours as texture change
contours. A second kind of contour can be defined by the local‘ alignment of various image features. For
example, the local aiignmcm of the terminations of the lines in Figure 3.3 defines such a contour. We
shall call these alignment contours. .

We cxplore texture change contours and their use in identifying discontinuitics in surface
geometry and surface structure in this section. Alignment contours will, for the most part, not be treaied
in this paper. Lect us examine next the relationship between texture change contours and surface

discontinuities.

Discontinuities due solely to changing surface structure

First, consider a discontinuity in surfacc geometry where the surface reflectance function is
constant across the discontinuity. Examples of this are two surface fragments that are adjacent in an
image and have the same surface structure and coloration but have different surface orientation, depth, or
rotation. For instance, Figure 3.2 could be the image of a creased surface as shown in Figure 3.4a or,
instead, it could be the image of two surfaces, one rotated 45° with respect to the other as shown in
Figure 3:4b. Figure 3.5 could be the image of two similarly textured surfaces differing in depth (one v/ 2
farther away than the other), or again it could be a creased surface (with, say, one side paratlel to the
image planc and the other side at a 60° slant).

From the constraints of the previous section, the image of a local patch of a structured surface

where the surlace geomietry does not change much will dikelv contain, at patcalar scales, tems that are

e

ey
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Figure 3.3 An umage conteur can alo be formed by the alipgnment of hine segment (emunations.
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(b)

Figure 3.4 T'wo of several possible physical origins for Figure 3.20 () a creased surface, and (b) a surface
rotated relative to another surfiace with the same surface structure,




Figure 33 Animage contour can be tormed by a 2:1 densite (number/Zarcad change ot small dots
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similar to one another in orientation, spacing, color, contrast, size. and shape. But where the surface
geometry changes, geometric attributes such as orientation, density, and length of the image of the surface
items will change. (Intensity, contrast, and color can also vary with changing surface gecometry, although
large contrast and color changes arc unlikely since these would require perverse illumination or
reflectance functions.) Thus, at a discontinuity due solely to changing surface geometry, there will often
be an abrupt change in these geometric attributes of the image of similar surface items, forming a texture

change contour.

Discontinuities due to changing surface structure

There is another physical source of texture change contours in an image, and this represents the
other basic type of surface discontinuity -- one due to changing surface structure. For instance, Figure 3.5
could be the image of two adjaécnt surfaces lying in the same planc that have different dot densities.
When surface structure changes, the similarity constraint of Scction 2 indicates that items at given scales
on onc surface will likely be more similar to one another in orientation, color, contrast, sizc, and shape
than to items on the other surface, resulting in abrupt changes in the items at cach scale at the image
location of the surface discontinuity, and giving rise to a texture change contour. In this casc, however,
any surface attribute can change, not just gcnmptric attributes, the surface structure can change arbitrarily

across this kind of surface discontinuity.

Texture change contours need to be made explicit
We have scen above that a texture change contour can be formed by a discontinuity in su-face
geometry or surface structure. A texture change contour can he due finally to some combination of these

factors. Thus, a texture change contour identifies the Tikely location of 4 surface discontinuity of some

form.  This alone makes the representation of texture change contours valuable sinee, as we saw above,
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the location of surface discontinuities may not be present explicitly in the intensity changes. This
represents the first major implication for the carly texture representation: texture change contours should
be made explicit in the image since they identify the likely location of discontinuities in surface geometry or

surface structure, information that may not be explicit in the intensity changes alone.

Separating the physical factors that produce texture change contours

Is it possible from an image to distinguish among those texture change contours duc solely to
changing surface geometry, those due solely to changing surface structure, and those duc to some
combination of these two factors? Unfortunately, the answer is that 1i1is cannot always be achieved from
image texture information alone. When the surface structure changes completely, forming a texture
change contour, there is no information in the image texture about whether the surface geometry changes
there also. A structural change can also mimic a gcometric change as, for example. when Figure 3.5 is due
to a change in surface dot density, and not to a change in depth. However. it is possible to distinguish
between those texture change contours that could be due solely to change in surface geometry, and those
that must involve some surface structure change. The former contain only geomerric changesin the image
of the surface items across the texture change contour: it would be posable with suitable 3-D
configurations of two surfaces having the same surface structure 1o project m the meage s cach of these
texture changes. The latter contain non-geometric changes. as i Yigure Y6 Noo change in surface
geometry can cause the squares in this figure to be transformed mto dots having the same density as the

squares. Instead, the surface structure must have changed. At the end of this section, we shall explore

how to distinguish between geometric and non-gecometric texture changes.

The texture edge primitive and its uses

The representation of an intensity change contotr begins with intensity edge and bar primitives,




Figure 36 No 3-D confipuration of two identically structured surtaces could produce this figure; no
surbiace canappedar compesed o squares fronr one vicwpoint. and of dots ot die same density from g

different view point
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which are local asscrtions assigned at many points along the contour that make explicit the position, local
orientation, contrast, and width [Marr 1976, Marr & Hildreth 1980). Analogous to this, points along a
texture change contour in an image can be represented in our carly texture representation by a texture
edge primitive, which makes explicit local contour position and orientation at the very least.

We have already scen above that the representation of texture change contours is important for
detecting surface discontinuities and can be used to distinguish between those discontinuities that
pussibly could be due solely to a change in surface gecometry and those that cannot.  In addition to this,
the texture edge primitive could be useful for establishing motion correspondence. Given the many
possible candidate matches of edge and bar fragments for motion correspondence over several degrees of

visual angle, the larger scale and rarer texture edges give fewer possible matches over a given range.,

Range of the representation

An issue of particular importance is the range in an image over which this texture edge primitive
can be assigned, since this determines, in part, the computational burden of forming the ecarly texture
representation. One extreme of this range would be a representation that encompasses only a very small
portion of an image (c.g. the fovea) at one time, or that allows only a very few primitives to be assigned at
one time. At the other extreme would be a rgprcscmalion that cncompasses the entire image and can
allow as many primitive assignments as image resolution permits. While it is difficult at this point to say
precisely where in this range our carly representation of texture should lie, it can be said that it must lic
closer to a full image range representation than to a very restricted but cconomical one that can represent
only a small fraction of the exture edges found in an image. Very limited range or resolution may have
be appropriate for some visual representations, but such limitations are undesirable for the carly
representation of image texture considering the uses (o which this representation will be put.

As previousty outlined, the full primal sketch, which represents bath the intensity changes and
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image structure, serves as the basic description of an image from which the 2%-1) sketch, a
viewer-centered representation of the viewed surfaces in space, is formed. In this framework, the early
texture representation is considered a part of the full primal sketch. Further, the formation of the 2'%-1)
sketch’s description of the viewed surfaces -- their orientation, depth, reflectance, location of
discontinuities -- is a fundamental goal of carly visual processing. 1f. as has been argued above, the
texture edge primitive makes explicit aspects of image structure that are useful for creating a
representation of surfaces present throughout an image, then it follows that texture cdges must be
detected rapidly throughout the image. This is an expensive step, since it requires that considerable
computational resources be brought to bear if an entire image is to be processed in a fraction of a second.
Next, as texture edges are detected throughout an image, they need to be stored away somewhere, and the
most direct way to do this is in a representational memory encompassing the entire image. This is
particularly important for cstablishing large range motion correspondence using texture cdges, since there
is a wide image range over which a particular token could move. This approach may scem
computationally expensive compared to the use of a scrutinizing processor for local analysis of surface
structure that is directed more leisurcly across the image.  But such a local scrutinizing processor would

be inherently too slow to rapidly cover large portions of an image and feed as input to the 2'%-1) sketch.

Detecting texture edges

Conceptually, the detection of texture edges can be divided into two major steps. First, the basic
slmclum.l clements that will be used to represent the image texture locally must be made explicit. We
shall call these primitive clements the fexture tohens. Sccond, the spatial vanation of these tokens are
used to locate texture edges. [t is not presently known what constitutes the texture tohens: this could
conceivably range from grey-level values to primitives that represent individaal texture clements and

therr attnbutes such as onentation, Tengthe width, contrast, shape, and colar (e.g. cach fime sepment in
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Figure 3.2). In Section 4, we shall sce that the range in which the texture tokens lic can be restricted, but
their precise form has yet to be resolved. Until it is, it will be difficult to say much about methods for
detecting texture edges.

One issue that can be discussed at this time, however, is the desirable dimensions for the texture
token atiributes. We saw above that at a discontinuity due solely to changing surface gecometry (constant
surface structure across the discontinuity), it will be geometric dimensions such as crientation, length, and
width that will vary with the changing surface geometry. It would therefore be dcsirablc. to have texture
tokens that have attributes that change when the surface geometry changes. if discontinuities due solely to
changing surface gecometry arc to be detected.

Discontinuities in surface structure can be detected in two ways. One way utilizes geometric
attributes. When the surface structure changes, everything is likely to change inctuding the gcometric
attributes given above. For cxample, the change in size of the items in Figure 3.6 could be used to
identify the boundary between the two regions. A second way to detect discontinuities in surface
structure would use changes in structural attributes. For example, the number of corners per item ‘n
Figure 3.6 could be used to identify the texture boundary between the two regions, since in the left-hand
region there are four corners per item (squarc), while in the right-hand region there are scro per item
(dot). This seccond method would be useful when all gcometric attributes happen to match across the
texture boundary causing the first method to fail. Whether this is likely to occur in natural images is
uncertain howcever; a point that we shall return to in Section 6.

We have not yet discussed how to distinguish between discontinutics due solely to changing
surface geometry from those that contain s[ruclur.ul changes, but only how to detect cither kind when
present. For instanee, we saw above that the changing size of the image of Sl.ll'filt‘(‘ items could be used in

some cases to detect either kind of discontinuity, but it would not distinguish hetween them. | etus turn
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to this issue next.

Distinguishing geometric and non-geometric texture change contours

How can texture changes contours that possibly are due solely to a change in surface geometry
be distinguished from thosc that must involve some non-geometric, structural change? When the surface
geometry changes but surface structure does not at a texture change contour, many image properties
usually remain invariant: the number of different scales at which surface items occur on a surface, the
approximate contrast, color, and packing factor (how tightly packed) of the items at each scgle, and
whether or not they are oriented. When surface structure changes at a texture change contour, everything

is likely to change including the above geometric invariants, A procedure that utilizes such geometric

invariants would thus seldom err in distinguishing geomectric from non-gecometric contours.
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4. The Texture Tokens

Using image texture to infer surface information involves two broad stages. In the first stage,
the basic elements that are to represent the local structure of the texture, which we shall call the texsure
tokens, are made cxplicit. In the second stage, the spatial variation of these tokens can be used to infer
local surface oricntation, surface depth, and the location of surface discontinuitics, and their temporal
variation may be used to infer motion correspondence. [t is not presently known what constitutes the
texture tokens of the first stage; this could conceivably range from grey-level values to intensity changes
to primitives that represent individual texture clements and their attributes such as small blobs of a

particular orientation, contrast, and size. This section explores the nature of the texture tokens and

attempts to restrict this range.

Separating the effects of different surface processes

A major function the texture tokens must serve is scparating the effects of different surface
processes in an image. As Scction 2 stated, surface structure is often due to different physical processes
opcrating on a surface, each at it own scale. Items generated by a given process on that surface will often
be similar to onc another in attributes such as size, shape, orientation, color, and contrast. ‘The spatial
variation of the projection of these items in an image can provide information about the structure and
3-D geometry of the surfiace on which the items reside; for instance, a discontinuity in the orientation of
similar items in an image can signal a discontinuity in surface geometry or surface structure (see Section
3). To utilize this information, however, it is necessary to separate the effects of different processes, for
otherwise any useful information carried by items generated by a given physical process will be obscured
in an image by the cffects of other processes also operating there. For o ample. if the common

orientation of bricks in a wall is to be apprecited, then i is preterable that neither makings on those
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bricks nor large spots encompassing several bricks interfere with the description of the organization of the

bricks themselves.

The role of scale in separating the effects of different processes

Since diﬂ“crém physical processes often operate at different scales on a surface, the particular
scale at which an image of such a surface is examined should be a useful factor for separating the effects
of the different processes operating there. For example, if Figure 4.1 is examined at very small scales,
then neither a change in the distribution of grey-level values nor a change in the orientation distribution
of the intensity changes can identify the boundary between the two regions that are composed of w's of
differing orientation, sinéc the amount of ink per unit area is the same on cach side of this boundary, and
the orientation distribution of the component line segments is the also same on cach side of the boundary
-- 50% arc horizontal and 50% are vertical. The orientation information needed to identif? y the boundary
between the two regions is carried at a larger scale in the orientation of each w as a whole, and not at a
smaller scale in the orientation distribution of its component line segments.

The intensity changes at a particular scale can be made explicit using a method developed by
Marr & Hildreth {1980]. In their theory of edge detection, they propose that an intensity change in an
image I(x,y) at a partiéular scale can be found by (in cffect) first soothing the image with a Gaussian
filter G of the desired bandwidth, and then applying the Laplacian opcrator V2 (o the smoothed imaée.
The loci of zero-crossings in VZ(G *1) = v2G * 1 define the location of intensity changes at that scale.
Figure 4.2 shows the zero-crossings in the convolution of Figure 4.1 with a v2G operator having an
excitatory region of width about the same as the width of the w's. Note that at this scale, the approximate
boundarics defined by the individual w's comprise the sera-crossings. Thus, the predominant local
orientation of the /(:m-crusx'ings is the siame as the Jocal orientation of the w's, and the significant change

in therr onentation at the boundary between the two regions in Figare 4.1 could be used o make that

|
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} Figure 4.1 The orientation distribution of the component line segments is the same in both the left and

g right regions of this figure -- 50% of the line segments are horizontal and 50% are vertical. It is the
changing orientztion of the individual w’s and not their component line scgments that defines the texture
boundary.

Figure 4.2 The zero-cromings of Figure 4.1 when convobed with a vG operator having an excitatory
region with width about the same as the width of the w's. Since the sero-crossings at this scale make
explicit the rough boundary defined by cach w. the local predonmimant orientation of the zera-crossings
will match the orientation defined by the individual w's, and will change sigmificanth at the texture
houndary .
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boundary explicit. Thus. we see that if this image is examined at the appropriate scale, the effects of the
process that determines the orientation of cach w can be separated from those smaller scale processes that
determine its component linc segment structure, and in this casc the intensity changes at that larger scale
are sufficient to scparate the approximate boundarics of the w's from their internal structure.

The V3G operator can also be used in certain cascs to find intensity changes that are coincident
with the texture boundary itself. Figure 6.8, consisting ofconvqlutions of 490° change in oricntation of
small linc segments shows, however, that there need not be any significant intensity changes present
there. In fact, we should not expect any to be there unless the average intensity changes between the

textured regions on each side of the texture boundary.

The raw intensity changes are not always sufficient for separating the effects of different processes

In view of Figure 4.2, it would be tempting to think that the G 7ero-crossings at various
scales may be sufficient as the set of texture tokens. There are, however, physical reasons that we should
not expect this to be so. ‘The intensity changes at a given scale will not solely correspond to structural
items at a particular scale, but will be affected to some degree by items at all scales and their affect will
vary with the contrast of these items.  In the brick wall cxample, high contrast markings on the bricks
could noticcably influence the zero-crossing description at the scale of the bricks themselves - something
that was carlier considered undesirable for the description produced by the texture tokens. o show that
this affect indeed occurs, a technique devised by Stevens [1981b] was used to create Figure 43 This
figurc is composed many small 2x2 black and white checkerboards. Stevens reasoned that of such small
checkerboards appeared on a background of grey that is the psschophyaical average of the hlack and
white, then the output of any smooth convolution operator that encompasses sevetal of these

checkerboards will not differ stgnificantly from that operator’s outprc whon encomipassing qust the gres

backetound, Phe wdea behind tas particalar figomre s that adtheon: oo colhna taple dethes an
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Figure 4.3 The texture clements in this figure consist of collincar tniples of 2x2 checkerboards, which
onented horzontalhy in dett regmon and verticallv in the right region. When this figuee is provided with
the matching grey background. there is no scale at which o significant ¢hange oceurs in the orientation

. . . i .
distribution ot the TG sero-crossings at the exture boundary between the two regions, as there was for
Figurc 4.1

ot
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oriented element and the 90° change in orientation of the triples defines 4 texture boundary. there will be
no scale at which the distribution of the intensity changes can be used to identifv this texture boundary,
when this figure is provided with the matching grey background. Figure 4.4 gives the VG 7€ro-Ccrossings
for Figure 4.3 ncar the texture hou_ndary. At the smallest scales of the VG operator, the edges of the
component squares of checkerboards are tracked by the zero-crossings. At the largest scales, as expected,
the zero-crossings are of low amplitude (amplitude is not depicted in these figures) and seem to meander
randomly. At intermediate scales, parts of the rough boundary defined by cach collincar triple appear in
the zero-crossings, but many zero-crossings corresponding to the cach triple’s internal structure also
appear. But at no scale is the boundary of the triples made explicit and their internal structure filtered
out as was possible for the w's above, making extraction of the triples’ orientation and the texture
boundary non-trivial. In Section 7, we shall sce that the human observer can rapidly detect a boundary
crcated by an orientation change of such checkerboard triples,

To reinforce this idea that the raw intensity changes cannot always scparate the cffects of
different processes, a second cxample will be given. The previous example showed that the substructure
of an item can influence the intensity changes at large cnough scales to leave that item only implicit in the
intensity changes. The second example again uses items at two different scales, but this time, the smaller
items are not components of the larger items, blu( instead arc independent of them.  Figure 4.5 consists of
fine scgments of two different lengths. The shorter line segments are oriented at 45° on the left-hand side
of the figure and at -45? on the right-hand side. while the longer line segments are randomly oriented
across the figure. Without the longer line segments, there would be a sharp orientation change in the
zero-crossings at the scales that capture the smaller line segments. The randomly oriented. longer Tine

segments. by adding noise to the local orientation distributions, weaken this sharp c¢hange in the

scroscrossings. Thus, we agaiin have an example where items (rom one process mterfere wath the intensit,
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Figure 4.4 The rero-crossings of portions of Figure 4.3 (when given the matching grev background) near
the texture boundars when comvolved with ©°G operators of various sizes. The left-most figure of cach
row depiets the arca of Figure 4.3 used to produce the zero-crossings in that row, The number adjacent to
cach figure gives the diameter of the excitatory region of the TG operator ucad to produce the
sero~cromsings in that figure. where cach 2x2 checkerboard is 222 units in size, At no scale is the boundany 1
of cach checherboard tple exphcit in the zero-crossimgs and s internad strectare filtered out. Further,
there v no saale at which the boundarny between the two regions of diferent chedkerboard triple
orientation s demarked explicith by a zero-crossing contour. nor s there a signibicant change in the local

ortentation distribution of the zero-crossimgs at the texture boundary,
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Figure 4.5 The shorter line segments in this figure arc oriented at 45° on the left-hand side and at -45° on
the right-hand side, while the longer line segments are randomly oriented across the figure. Without the
Jonger line segmentsi, there would be a sharp oriemation change in the sero-crossines at the scales that
capture the smaller line segments. The longer line segments weaken this change in the 7ero crossings.
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changes that best capture those items from a different process. The information necessary to separate
these two kinds of items is clearly present in this image, however: it is contained in the differing lengths of

the individual line segments themselves.

What are the texture tokens?

We have seen above that the raw intensity changes appear to be too primitive a description of
image texture to suffice as the sole texture tokens. In the above two cxamples, it is groupings, not
individual points, of the intensity changes that correspond to the items that produce the texture bqundary
-- the oriented triples in the first example and the short line segments in the second example. This
suggests that some form of local grouping of the intensity changes that results in tokens that roughly
correspond to individual line segments, small blobs, local clusters and collincar groupings of thesc could
provide a description of the local structure of image texture that better separates the items produced by
different physical processes. Marr [1976] has proposed that much local image structarc can be made
explicit by assigning place tokens to such items as terminations, small blobs and line segments, which are
presumably found from the intensity changes, and then by grouping these tokens to find collincar
groupings and local clusters, which are then also assigned places tokens. These tokens would correspond
to small markings, scratches, surface elements qnd local groupings of these on physical surfaces. Tt is not
presently clear whether the carly representation of texture requires tokens the. faithfully and precisely
represent these kinds of items everywhere in an image. Perhaps some computationally less expensive
processing that roughly identifies a sizable fraction of such items would suffice at this stage, with a more
precise description available with scrutiny if nceded.

Exactly what the texture tokens are thus remains an open question. It solution is important not

only for understanding how to detect texture boundarics, which has been emphasized here. but also for

depth from texture and motion correspondence. The textare tokens could provide the untoreshortened
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measure needed to obtain depth from texture, as discussed in the introduction.  Further, the texture
tokens, like the texture edge. would represent larger scale and rarer primitives for motion correspondence
that have fewer candidate matches over a given range than the intensity changes. But being more precise
about these processes must await the determination of the texture tokens, and not much can be said
definitely about the form of the texture tokens at this point other than it appears that the intensity

changes alone will not suffice.




5. Summary of the Theory

Three physical constraints on surface structure...

(1) The visible world can be regarded as being composed of smooth surfaces o 1ot cranc

Sunctions whuose spatial variation may be complex.
(2) Physically different processes operate on a surfuce to form different howds of wems there

(3) Surface items generated by the same processes tend (o be more sSimilar 10 ose ametizcr o Hien oo,

shape, lighiness, color. and spatial arrangement than to surface items generated b other proce e,

..combined with the goal of producing the 2%-1) sketch, a viewer-centered representation ot the vistble
surfaces where the factors that produce an image -- surface geometry, surface reflectance. illumination,
and vicwpoint -- are scparated, lead to the following conclusions for the representation of the image

fexture:

(1) A texture edge primitive is needed to identify texture change contours, which are formed by an
abrupt change in the 2-D organization of similar items in an image. The texture edge can be used
for locating discontinuitics in surface structure and surface geometry and for ¢stablishing motion

correspondcence.-

(2) Abrupt changes in attributes that vary with changing surface geometry - vrientation, density.
length, and width -- should be used to dentify discontinutics in surta ¢ geometry and surface

structurc.

(3) Texture tokens are needed to separate the effects of different physical processes operating on a
surface. They represent the local structure of the image texture. Fheir spatial variation can be used
in the detection of texture discontinuities and texture gradients, and their temporal variation may
be used for C.'\(.lhlixhin:: motion correspondence. What preesely constitutes the tevure tohens s

unknown: it appears. however, tat the mtensity changes atone will not sutfice, bat locat grouprags




of them may.

(4) The abovce primitives need to be assigned rapidly over a large range in an image.




-42-

6. Texture Edge Demonstrations

The primary purpose of this section is to present psychophysical evidence that texture edges are
detected by the human visual system and that they are represented over a large range in an image.
The secondary purpose is to characterize those types of texture changes that can give rise 1o

perceived texture edges.

Texture discrimination and texture edges

Most previous psychophysical studies of visual texture have concentrated on their
discrimination {c.g. Julesz [1973,1981] and Beck {1966]). For example, in Figure 6.1 we can
immediately see without scrutiny that the lower left region of the textured pattern is different from
the rest of the pattern; we can discriminate the regions. In Figure 6.2, the textured pattern looks
homogeneous without scrutiny even though the upper right corner is composed of backward R's,
while the remainder of the pattern is composed of forward R’s [Julesz 1973]. In this case. we cannot
discriminate the regions. Scveral theories have been advanced to explain why some textures are
discriminable while others are not, with Julesz's second-order statistic conjecture probably the best
known [Julesz 1973].

The problem with applying texture discrimination to the texture cdge pr('lbk:m is that texture
discrimination is an "anything goes” task; the viewer may usc any means at his disposal to try to
discriminate the textures within the allotted time. Suppose a viewer is asked which one of four
quadraﬁts of a texture pattern is different from the others (as in Figure 6.1) and suppose that he
correctly identifies that quadrant. Did he find the correct quadrant by first finding the texture

boundary between the different regions, or did he instead sample four elements. one from ecach

quadrant. and compare them?  Because it is concetvable that texture discrimimation ¢ ocenr af




Figure 6.1 A discriminable texture. The lower left region can be seen immediately to have a different
texture fromn the rest of the figure.
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least in some cases without the texture boundaries being explicitly represented. such texture
discrimination studies cannot be used as evidence that texture cdges are detected by the human
visual system. For our purposes, these studies can only show that there are some texture differences
(c.g. Figure 62) for which texture edges are not detected, since if they were  detected, we could
presumably discriminate them. But given the "anything goes™ nature of the discrimination task, it
can not be assumed that all discriminable textures have their boundaries explicitly represented.

This means that different paradigms to study texture edges must be utilized.

The apparent motion paradigm

It was suggested carlier that texture boundarics could be used to cstablish moton
correspondence. We can test this hypothesis and test the human ability to perceive texture edges by
using an apparcnt motion f)aradigm. Itis well known that if a display scquence such as Figure 6.3a
foilowed, by Figure 6.3b is presented to a vicwer with a short (siy 30 msec) interstimulus interval
(IS1), the viewer will perceive apparent miotion -- in this case a single square will be seen to move to
the right and rotate 45°. Interestingly. if the straight linc sides of the square are replaced by texture
edges. the correspondence can still be achicved. When the s ence in Figure 6.4 15 presented. the
whole pattern is scen to move to the right_ with the embedded square appearning to both move to the
right and rotate 45°. Here the wexture boundary is formed by a 90° orientation difference in the
small line segments. Typically, an embedded square of about S visual angic and a presentation
sequence of W misees was used for cach frame with an 181 of 30 msees, but the correspondence can
be achieved over a wide range of visual angle and docs not depend cntically on the ISE 1t will be
shown below that there 15 nontensity edge at any scale present at the boundary betwoen the two

textured regrons so the correspondence must be estabhished from the texture ditference.

Ramachandran, et al (1973} have reported establishing apparent motion using - toxture

b SRV
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(a)

(b)

Figure 6.3 An apparent motion sequence. Display (a) is presented for 300 meec, a blank displiay follows
for 30 msec, and then Display (b is presented for J00msee. The viewer pereeives a single square moy ing
to the right and rotating,




\

(a)

rar—

(b)

Figure 6.4 Apparcnt motion that uses texture edges. As in Figure 6.3, Display (a) in presented for 00
msee. @ blank display follows for 30 meee. and then 1Display () is presented for 300 myee. The viewer
perceives the whola pattern moving to the nght with the embedded square appeacing both o move to the
nght and 1otate Ty apparent motion: paradiem can be used o test for those testuare chatiges tha
produce dearls percenved wxinre boundarics.
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boundary with a sccond-order statistical difference (with cqual first-order statistics). In their
paradigm, an embedded square is translated but not rotated. ‘This latter format has the
disadvantage for our uses that the direction in which the embedded square of different texture is
moved can be perceived even when its boundary is only weakly, if at all, perceived. By adding the
rotational component to the embedded square’s motion, only a clearly perceived boundary gives
rise to a square that appears to both translate and rotate. The key point here is that unlike the
texture discrimination tasks, it is difficult to imaginc how a viewer successfully can complete this
motion task without his visual system making cxplicit the boundary between the two regions of

differing texture.

The static shape recognition paradigm

A second paradigm that involves static shape recognition can also provide evidence of human
ability to, perceive texture edges. If an embedded figure in a texture pattern is sufficiently complex
in shape and can still be recognized without scrutiny, then it scems likely that that shape’s boundary
is detected by the visual system. In Figure 6.5, which uses the same texture change as in the motion
example, there is little difficulty in recognizing which letter of the alphabet corresponds to the
embedded shape.  Thus, this gives cvidcncc from two independent techniques -- the apparent
motion paradigm and the static shape recognition paradigm -- that a particular kind of texture
boundary (one formed by a 90° difference in small linc segments) is detected by the visual system.
Kidd, Frisby and Mayhew [1979] have found that texture boundarics can initiate vergence
movements for stercopsis. This could serve as a basis for a third paradigm for studying texture
boundarics. but this has not been investigated here.

An orientation difference of line segments is not the only sort of texture boundary that is

successful in the apparent motion and shape recognition paradigins. Figure 6.6 shows difterence
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in the dot density (4:1) that results in immediate shape recognition. In the apparent motion
paradigm, the same texture change results in the embedded square being perceived as mosving to
the right and rotating. There arc many sorts of texture changes that fail in both the shape
recognition and motion paradigms. Figure 6.7 show several types of texture changes for which
static shapc recognition is difficult without scrutiny. These same texture changes do not result in
the correspondence of the embedded square in the apparent motion paradigm: no embedded
square iS secn moving to the right and rotating. In particular, Figure 6.7¢c, which fuils the tests for
perceived texture cdges. passes the Julesz-style test for texture discrimination (Figure 6.1). While
some texture boundaries result in motion correspendence and shape recognition and others do not,
in all the texture boundaries that have been tried, motion correspondence is established if and only
if shape rccognilion‘ is immediate. This strengthens the hypothesis that texture edges are explicitly

represented by the visual system,

Texture edges are not always explicitly present in the zero-crossings

It was claimed that in Figure 6.5 there is no average intensity change at the texture boundary at
any scale, anq thus this boundary is not cxplicit in the intensity changes. This claim can be
substantiated by‘convolving the figure with several sizes of the VzG mask of Marr and Hildreth
[1980]. and cxamining the zero-crossings in the output. As described carlier in Section 4, the
zero-crossings of a viG operator, which is the composition of a Gaussian and the Laplacian,
identify the locations of the intensity changes at the scale deteninined by the bandwidth of the
Gaussian. Figure 6.8 shows the zero-crossings in the convolutions of a portion of the texture
boundary in Figure 6.5 with ©2G masks of various sizes. Note at the smallest scale, the individual

v

line scgments arc captured, and at the largest scale the the external boundary is captured. but at no

scale 1s the boundary between the tvw o regions prosent in the zero-crossings.
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Figure 6.6 A 4:1 dnt density difference can also give rise to shape recognition. The viewer can recognize
‘ immediately the slape of the cmbiedded region of greater deasity as the letter T In the density case,
o however, 1t is difficult w separate experimentally the selative nfluences of Lirge scake miensity changes )
and changes in token density at the perecived boundary.




% x dpg 9 b v, B b 1.9
X X bt X AE M b XX X A LA A R
x4+ xVox » .t + + X * NG VNSRS > oA, Va9
AT XXY X x ax Fr b Paaadaplod sl fiallad s w9
4\’*4\')&*‘\"“‘*,‘*}--’-‘*)(*)(*_#,‘ X"'* 44 44 Avvdvl’da{‘b qu
* XA K XX W% bg & Lo, ¥ v Voo av b9
X A Py X +X$*X)(ﬁ+ x 4 a o> vo A[;bbﬁbv (S DQ
Fotx X4 Xyr X x Lor Xy ¥ pavioog FTALAL g0 Py V4T
$X vﬁ»t*xﬁx*u’ AR xx X 43 % <>oboD v abs 0®0 e ag8
I [ » v v
"“X*— T))._;’x)()‘ x*x*\'y\’»\*x%x qu VAQODDOOQAVV Ofuogaaqud
*"x"x"'r»*x*x+;+47ir\9+ 4\'++x vqﬁb:qdoo QUD Lf\uo “vabv a
X+:Xf*r :’T/\ *w\*fxz_;w‘r*:x‘%t,* 2<AZ AAbAd%U %0000 “ Oqav 4322“4
+x 4 » At x Ia,0 0804500500, 0 4
XxaX Yy T aayT T X >N o v L0 Qo6 A gq v ab
**.*.);)(4:*' T)\/A_‘ T\/rvYL) \f’&»T_:x “'I: a [EDAq DAVAAOOOOOODUOUO\{O‘?DQ" D(]AAAVA
XX A Y LT S R ) ) X 4 7p 24897 00000 4,%4" povv
XL 9 AT ANy R N v ba 7 Tg 4bTTd, p
%xtx‘,\'«i LA‘})J r+ ¥xty r‘;\_, X 4 A :A&VAA[}P DOO OC)O4 po Bg stb
* ¥ > Yy R * b 44 v >
"kx*')L g ++x+ -iT)l_xIJ\'* 4 bag v 200 DVADOQO Apbpaqoa
x* I‘\"‘vlrﬂ> X ;(*xx* YA x 2 bg 4 2%4‘7?%&0 vi?l AquAq > b
b x X3 vy Yy "x*+x,\u\>T’~/>x&$&*:- 98 vbvv:DbQO%gbt[’a 44% v
g YIS xR 4 i Xt e VeI by P O Tan, 4 p Lot
1 $+x+xx FrpX Xy ’\'A\'f' + X+++ Xx*'\' v qboddb‘lgv AbdAbddqb pdb
% X *‘\'x*tx‘\"‘*xxxxxi&x qddv Abqbqbddpdt’d[}d% qvA
‘\'++* *X*+k+x+xx+x *+++‘l‘ Fx * X gbvdqubd‘ﬂ bbdb q vo bp ADA
+4 %% IS vpda a 4
Pk oo My Ty T X TR X TR PSR W RS AN SR A
(a) (b)
quAqbqppvdv‘?Abquqpqq VQQAQAV
9P N, g8 bV v Iy ag ©
aI ¥ Ip 9 g Poa bba ¥ oYy
A bqq vPaby, .44 AoV g 4
99 Pbg veeva q Q
vav a9 VOQVC-QV 4o pQaPb> DD 4
AL AKﬂKVTQquYT\‘L('Q‘KvbAVA
LIPS BN
LR £ tx ¢ 42 q
AP SISy S S I
Vasph T LEp AL v v 989
v g0 A% Tk bl vV 0 g
Va8 Py PY OV K aaV% A
@AY E 4 KA e AT by
QA Y g A BT K V:4dqqupb
a9 % v v N A o pdadav g v
quq qu 'f\v_{’K‘_‘_D vaDg?qubbv
a DAdd Vb aA }?1\ Q v Vg pa N Vdv
q Y et VAN 99
pIop a0 9a (KX VT KK g g v
LRSS fKK Ng K ag b
VP9 vn £ a2
v v K T $Ke N vk f a9
aVaa ¥ & o0
9 a9 g%9x et v A N
< A ~ xR T x v 9
vd v T AT alqobr g rtely
%q VVAAPQA vq qbqvv qu a vd
4 IN SIS ANRE A I W
0,4 8 T ggdp4 bpIV Ve
o290 Yoo W payPav ¥ gl Pl av
Q7a494gh 85 Vg gy vatv b g ey
(c)
Figure 6.7 Several texture changes for which immediate shape recognition i difficult. Cluse examination
of cach pattern reveals that the embedded shape is (a) the detier H. (b) the Tetter V., and (0) the leter 7.

Note that the texture change in (c) is the same as in the "discriminable” Figure 6.1,
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Figure 6.8 The zcro-crossings for the texture change in Figure 6.5 using VG operators of varjous sizes.
The leftmost figure of each row depicts the image used to produce the zero-crossings in that row. The
nember adjacent to cach figure gives the diameter of the excitatory region of the VG operator used to
produce the sero-crossings in that figure, where cach line segment is 9 units long. At no scale is the
boundary between the two regions of different line scgment orientation explicith demarked by a

7CTO-CTOsSINg contour.
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In Figure 6.6, there is a large scale intensity change that could be used to identify the embedded
region’s boundary (this casily is seen to be true by viewing the figure from far enough away that the
individual dots ar¢ not resolvable -- the embedded shape can still be perceived due to the large scale
intensity change). The fact that a texture boundary that is due to changing texture element density,
length or width is often accompanied by a large scale intensity that coincides with the texture
boundary makes it difficult to access experimentally if these texture changes result in perceived
texturce edges in the absence of these large scale intensity changes; further work is needed in this
area. Orientation changes have been cmphasized in this paper, since they are free of this

complication.

Image range of the texture edge primitive

Motion corrcspondcncé and shape recognition can be achieved with these figures as large as
30-40° in visual angle; at this size, local scrutiny could reveal only a small portion of the boundary
at a given time. But the motion correspondence is immediate, and shape recognition can still occur
when a figure is bricfly flashed (300 msec). This supports the hypothesis that many texture edges

are being simultancously found over a large portion of the image.

Characterizing those texture changes that produce perceived texture edges

A complete characterization of thosc texture changes that produce perceived texture edges and
those that do not (z;s evidenced by the above apparent motion and shape recognition paradigms) has
yct to emerge. A c?ymplctc phenomenological characterization is difficult to obtain because there
may be many attributes {c.g. contrast, color, oricntation, density, length) that the visual system can
use to detect texture edges, and new attributes can always be proposed that have yet o be tested

psychophysically. Further, it is difficult to separate some attribistes experimentally, such as texture
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element density from avcrage local intensity, as discussed above. Nevertheless, two rules seem to
characterize many of those texture changes that can and cannot produce perceived texture edges.

The first rule is that significant, abrupt changes in attributes that vary with changing surface
geometry produce perceived texture edges. This has already been shown to be the case above with
the orientation of texture clements. Intensity, density, and size changes of texture elements can also
produce perceived texture boundaries, but further wor}k is nceded to decouple the large scale
intensity changes from the density and size changes to access each attribute’s individual effect.
Conversely, the textures in Figure 6.7 were gencrated by holding constant average local texture
clement density, orientation, length and width, but otherwise using different shaped texture
elements across the texture boundary. Even though there are significant structural differences in
the texture elements across the boundary, such as the number of terminations and corners. these
changes alone do not produce perceived texture edges. In fact, texture clement color and contrast
are the only attributes that do not (usually) vary appreciably with changing surface geometry that
have been found so far to produce perceived texture edges. This contrasts with Julesz's results for
texture discrimination which indicate that changes in the number of terminations can apparently be
used to discriminate textured regions [Julesz 1981]. As mentioned carlier, texture discriminability
does not insure that a clear texture boundary will be perceived.

This first rule is not surprising in light of the discussion in Section 3 on the uses of texture edges.
Reiterating what was said there, texture edges can identify discontinuities in surface geometry and
surface étructurc. At a texture discontinuity where surface gecometry changes but surface structure
does not, it will be those image attributes that vary with surface gcometry -- ¢.g. orientation,

density, length, width -- that can be used to identify the discontinuity in the image. At a

discontintity where suifuce structure changes, everything is likely to change -- orientation, density
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color, contrast, size. Further, the presence or absence of geometric invariants such as similarly
oriented items at a given scale that remain oriented across a texture boundary can be used to
distinguish between these two kinds of discontinuities. Thus, while structural attributes such as
number of terminations and corners could help detect changes in surface structure when geometric
attributes such as orientation, density, and size, all happen to be constant across a texture
discontinuity, the visual system could consider such an occurrence too unlikely in natural images to
justify its detecﬁon.

The second rule is that the comparison aof distributions of a given attribute of otherwise similar
texture elements is kept simple. This rule is detailed here only for the orientation attribute. Figure
6.9 shows that the oricnted line segments at two fixed orientations (45° and -45°) found inside the
embedded Z-shaped region are sufficient to match the randomly oriented line segments found
outside the embedded region -- the embedded leteer is difficult to recognize quickly. Likewise, the
same texture change does not produce motion correspondence in the apparent motion paradigm.
This suggests that the visual system may assume that the orientation distribution of items at a given
scale cither clusters around a single value or is, for all intents and purposes, random. A process that
naturatly produces, say, a distinct, two-pcaked oricntation distribution (as 45° and -45°) of
otherwise identical items would be deemed too rare to be worth distinguishing from a random
distribution.  Incidentally, this contrasts with previous work by the author using texture
discrimination instcad, for which three oricntations were found necessary to match random

orientations [Riley 1977].
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Figure 6.9 Two fixed orientations (45° and -45°) of the linc scgments inside the embedded region match
the random oricntations of the line segments outside the embedded region; the embedded shape is
difficult to recognize initially as the letter H.
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7.Texture Token Demonstrations

In this section, psychophysical demonstrations are presented that the elementary tokens that the
human visual system uses to rcpreéent the local structure in image texture do not consist solely of
the raw intensity changes at a variety of scales in an image. Specifically, demonstrations will be
given that there are no significant changes in the orientation distribution of the v2G ZCTO-CTOssSINgs
at any scale that can be used to detect some texture boundarics that humans can readily perceive.

Two different approaches are taken to create these demonstrations.

The Checkerboard Paradigm

The first approach utilizes the checkerboard technique described in Scction 4. The gencral idea
is 10 use small black and white checkerboards as component items in larger scale groupings so that
the larger scale groupings will not be explicit in the larger scale intensity changes due to the
integrating cffects of the Vv2G convolution operator. In particular, cach dot in Figure 7.1 can be
replaced by a small 2x2 black and white checkerboard and the entire figure given the matching grey
background that is the psychophysical average of the black and white (see Figure 4.3). This match is

achicved by viewing the checkerboards from sufficiently far away and adjusting the background

grey until the checkerboards disappear. Under these conditions, the embedded letter, which can-

easily be perceived in the unmadificd Figure 7.1, can still be immediately recognized in the so
modified figure, provided the figure is viewed from sufficiently close in (otherwise, if the viewer
moves Back from the figure, the checkerboards eventually begin to disappear, with those toward the
periphery being affected first).

‘The previous section argues that the above is evidence that a texture change consisting of a large

change in the orientation of collincar triples of tiny 2x2 checherboards can be identified by the

v ——
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Figure 7.1 When the dots in this figure are replaced by small 2x2 black and white checkerboards and the
entire figure is given the matching greyv background that is the psychophysical average of the black and

zero-crossing contour, nor is there a significant change in the local arientation Jistribution of the

boundary between the two regions of different checkerboard triple onientation explicitly demarked by a
sero-crossings at the texture be indary.

white, the embedded shape can still be recognized as the letter T, Figure 3.4 showed that at no scale is the
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human visual system. Since any smooth spatial operator that encompasses several of these
checkerboards will respond with the same output that is given to the grey background, there is no
intensity change at any scale at the boundary between the two textured regions. Of crucial
importance here is the fact that the orientation defined by checkerboard triples is not explicit in the
intensity changes cither. As shown in Section 4, the VG zero-crossings at no scale make explicit the
boundaries of individual triples while filtering out their internal structure, and thus the changi.ig
orientation of the triples at the texture boundary cannot be found by looking for a significant
change there in the local orientation distributions of zero-crossings of VG opcrators at some scale

(sce Figure 4.4).

Mixed lengths paradigm

The second approachk taken to demonstrate that the raw intensity changes are not sufficient as
the sole texture tokens utilizes texture elements of two different lengths. The general idea is that if
onc sct of texture elements of a given length has, say, some oriented structure in a texture, then this
oriented structurc will be easier to detect in the presence of other texture clements of a very
d.fferent length than in the presence of other texture elements of a similar length provided the
texture clements arce first scparated on thc_ basis of their length. Figure 7.2a shows a texture pattern
composed of linc segments of two different lengths. The shorter line segments are oriented at 65°
inside the embedded H-shaped region and at 25° outside this region. The larger line segments are
nine times as long as the shorter line segments and are oricnted at 45° throughout the texture
pattern. Figure 7.2¢c shows, for refercnce, just the shorter fines found in Figure 7.2a. Figure 7.2b
contains an identical copy of the shorter linc scgments found in Figure 7.2a. but the larger line
segments have been shrunk 1/9th in length (to the same length as the other line segments) with a

corresponding nine fold increase in their density (i.e. number/arca). thus keeping the total amount
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Figure 7.2 The creation of texture patterns (a) and (b) both begin with underlying pattern (c¢), which has

line scgments at 65° inside the embedded region and at 25° outside this region. Masking 45° line
scgments nine times as long as those in pattern (¢) and with oie ninth the density (number/area) are
added w complete pattorn (a). Masking 45° line segments of the same length and with the same density
as pattern (¢) are added (o complete pattern (b). The embedded H in patiern () s casier to recognize
than that mn pattern (b, an eftect that s gccentuated at obhque or distant viewpoints.  This result s
difficult to explaimat the raw intensity changes at various scales are the ole texture tokens.
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of 45° contour over a given area constant. Thus, measuring the amount of contour at a given
orientation pcf unit area taken from very local descriptions of the intensity changes found in an
image of these figures would not show significant differences between Figure 7.2a and Figure 7.2b.
Figure 7.3 and Figure 7.4 contain vG zero-crossings at various scales near the embedded texture
boundary of Figure 7.2a and of Figure 7.2b, respectively. They were generated to show that for no
scale (opcrator size) is there a significant diffcrence between the locat orientation distributions of
zero-crossings for Figure 7.3 and Figure 7.4 that would result in a noticeable difference between the
detectability of the embedded region in Figure 7.2a and Figure 7.2b. At the smaller scales, the
zero-crossings where the line scgments of different orientations cross are very similar for Figure 7.2a
and Figure 7.2b, and since the local amount of contour at cach orientation is the same in both
tigures by design. the local zero-crossing distributions of the two figures at these smaller scales are
quite similar. At the larger scales, the smaller line segments are not resolved; since the smaller line
segments carry the orientation change that produces the texture boundary, differences in the local
zero-crossing distributions of the two figures at larger scales are not relevant to the detectability of
the texture boundary. Thus, if texture boundary detection were based on identifying significant
changes in the distribution of zero-crossings at the boundary, the texture boundaries in Figure 7.2a
and Figure 7.2b should have similar detectability. Note, however, that in Figure 7.2a, the
embedded letter is casier to recognize than in Figure 7.2b, an cffect that is accentuated at distant or
oblique Vicwpoims. This suggests that the line scgments are somchow first separated on the basis
of their length.

This result may scem at odds with those due to ‘Treisman [1977,1980]. She found, using a variety
of technigques. that human observers were very poor at the pre-attentive sclection of items having

the conjunction of two or more attribute values (c.g. shape:H and colorired) ina ficld of distractors.
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Figure 7.3 7ero-crossings for the texture change in Figure 7.2a using v’G operatars  of various sizes.
Again. the leftmost figure of cach row depicts the image used to produce the zero-crossings in that row,
and the number adjacent t each figure gives the diameter of the excitatory region of the v'G operalor
used to produce the zero-crossings in that figure, where the shorter line segments are 9 units long.
Comparison with Figure 7.4 reveals that at the smaller scales, there s no significant difference in the local [
orientation distribution of the zero-crossings between the two figures. while at the larger scales the simaller ‘
line segments, which contain the boundary-forming oricntation change, are not resolved. Thus, the
results in Figure 7.2 cannot be explained if the texture boundary is detected solely on the basis of
significant changes in the local zero-crossing distribution across the boundary.
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Figure 7.4 Zero~crossings for the texture change in Figure 7.2b using VG operators of vanous sizes,
with the same format as Figure 7.3
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‘ In Figure 7.2, the selected attributes are orientation and scale (length of line segment). A possible

l explanation is that scale is indeed special as suggested earlier -- large differences in size may not be
treated like other variations in attribute values, since they strongly suggest that different processes

are responsible for the respective items.
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8. Summary of Demonstrations

(1) Two different experimental paradigms -- one based on static shape rccognition of a textured
region embedded in a textured surround and one based on motion correspondence of texture
boundarics -- support the hypothesis that some kinds of texture boundaries are detected by the

visual system and are made explicit in a representation that covers a large range in an image.

2) viG zero-crossing results indicate that there are no significant intensity changes at any scale
coincident with the texture boundaries in the above figures and thus the detection of these

boundaries must be based on more abstract texture measures.

(3) Two rules characterize many of the texture changes that can and cannot produce perceived

texture edges as evidenced by the experimental paradigms in (1):

(a) Significant, abrupt changes in texture element attributes that vary with changing surface geometry

-- grientation, length, density, width -- produce perceived texture edges.
(b) The comparison of distributions of a given attribute of otherwise similar texture elements is kept
simple -- e.g. two fixed orientations are sufficient to match random orientations in the texture

boundary paradigms.

(4) Two different experimental paradigms -- one using oriented groupings of 2x2 checkerboards and one
using line scgments of two different lengths combined with vIG 72ro-crossing results cast doubt that the
raw intensity changes at various scales would suffice as the sole texture tokens; there are no significant
changes in the distribution of the VG zero-crossings at any scale at the texture boundaries found in these

demonstrations,

ey -
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